First thing that comes to mind is searching for datasets that collected data in plots: e.g,
res <- dataset_search(query = "plots", limit=200)
res$data
# A tibble: 116 x 8
datasetTitle
<chr>
1 Data from vegetation plots at Atiquipa, Southern Peru
2 Species plots from the Norwegian Vegetation Mapping Programme
3 Species checklist on the permanent sample plot (Prioksko-Terrasnyi Biosphere Res
4 2010-2013 Beetle Data from Machair LIFE+ Project Plots
5 (Table 4) Acari abundance in control and warming plots, Abisco Research Station
6 Alien plant presence dataset from the point-radius plot surveys in 2010-2015 in
7 IPAS Kitanglad
8 SuLaMa reptile survey 2013
9 Inventory of natural and agroforestry stands characterized by Xylopia aethiopica
10 Lama Forest reserve Inventory, South Benin. Data published in the framework of J
# ... with 106 more rows, and 7 more variables: datasetKey <chr>, type <chr>,
# hostingOrganization <chr>, hostingOrganizationKey <chr>,
# publishingOrganization <chr>, publishingOrganizationKey <chr>,
# publishingCountry <chr>
descriptions
gets you to long form descriptions of each dataset
res$descriptions
then can manually or programatically filter through to see what datasets you want to work with.
There’s no filter or flag to search for data collected in plots, so this seems like the quickest way.
Once you pick datasets you can query on species of countries, etc. and include the dataset key like
> occ_data(datasetKey = "5accf920-492e-4641-9ba2-11481c116419")
Records found [9054]
Records returned [500]
Args [limit=500, offset=0, datasetKey=5accf920-492e-4641-9ba2-11481c116419]
# A tibble: 500 x 54
name key decimalLatitude decimalLongitude issues
<chr> <int> <dbl> <dbl> <chr>
1 Oenanthe oenanthe 1556661912 57.02629 -4.22566
2 <NA> 1556666800 57.12099 -3.93400
3 Linaria flavirostris 1556664293 57.06609 -3.99711
4 Larus glaucoides 1556664347 57.96485 -3.97924
5 Larus glaucoides 1556663773 57.96485 -3.97924
6 Gavia immer 1556664263 57.75044 -3.90029
7 Acanthis flammea 1556666017 58.02025 -3.88071
8 Alca torda 1556666590 57.65400 -4.29750
9 Anas penelope 1556668573 57.12099 -3.93400
10 Calidris alpina 1556666153 57.49305 -4.25400
# ... with 490 more rows, and 49 more variables: datasetKey <chr>,
# publishingOrgKey <chr>, publishingCountry <chr>, protocol <chr>,
# lastCrawled <chr>, lastParsed <chr>, crawlId <int>, basisOfRecord <chr>,
# taxonKey <int>, kingdomKey <int>, phylumKey <int>, classKey <int>,
# orderKey <int>, familyKey <int>, genusKey <int>, scientificName <chr>,
# kingdom <chr>, phylum <chr>, order <chr>, family <chr>, genus <chr>,
# genericName <chr>, specificEpithet <chr>, taxonRank <chr>,
# coordinateUncertaintyInMeters <dbl>, stateProvince <chr>, year <int>,
# month <int>, day <int>, eventDate <chr>, lastInterpreted <chr>,
# license <chr>, geodeticDatum <chr>, class <chr>, countryCode <chr>,
# country <chr>, recordNumber <chr>, eventID <chr>, identifier <chr>,
# occurrenceStatus <chr>, vernacularName <chr>, institutionCode <chr>,
# taxonConceptID <chr>, locality <chr>, collectionCode <chr>, gbifID <chr>,
# occurrenceID <chr>, dataGeneralizations <chr>, infraspecificEpithet <chr>